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A NOTE ON THE DECOMPOSITION OF GRAPHS 
INTO ISOMORPHIC MATCHINGS 

N. ALON (Cambridge) 

All graphs considered are finite, undirected, with no loops and no multiple 
edges. A graph H is said to have a G-decomposition if it is the union of pairwise 
edge-disjoint subgraphs each isomorphic to G. We denote this situation by GIH. 

Many results are known about G-decomposition, for references see e.g. [1] 
and [6]. In this paper we establish some necessary and sufficient conditions for 
a graph H to have a tK2-decomposition, where tK2 is the graph consisting of 
t independent edges. Our result implies, as a very special case, the main result 
of Bialostocki and Roditty [3], that states that if G is a graph with e edges and 
maximum degree A, then, with a finite number of exceptions, 3K2IG iff 3le 
and A<=e/3. 

For every graph G, E(G) is the set of edges of G and e(G)= IE(G)I. //(63 
is the maximum degree of G and z'(G) is the chromatic index (=edge-chromatic 
number) of G. 

We begin with the following simple lemma, which is proved in [2]: 

LEMMA 1. Let G be a graph and let M, NcE(G) be disjoint matchings of 
G with ]M[>[NI. Then there are disjoint matchings M" and N" of G such that 
]M'[=[M]--I ,  ]N'I=[N]-t-1 and M ' U N ' = M U N .  [] 

As an easy consequence we obtain 

LEMMA 2. For every graph G and every t > l ,  tK~IG iff 

(1) tle(G ) and Z'(G) --< e(G)/t. 

PROOF. If tK~IG then obviously (1) holds. Conversely, if(l) holds put r=e(G)/t. 
Since z'(G)<=r, there are r disjoint matchings F1, ..., Fr of G that cover E(G). 
By repeated application of Lemma 1 to pairs of these r matchings that differ in 
size by two or more we obtain r disjoint matchings E1 ... . .  Er of G that cover 
E(G) and IE~l--t for all l<-i<=r. [] 

REMARK 1. K6nig's Theorem (for proof see [4, p. 105]), asserts that for every 
bipartite graph G, z'(G)=A(G). This and Lemma 2 imply that for every bipartke 
graph G tK2[G iff 
(2) tIe(G) and A(G)<=e(G)/t. 

This result is stated as Lemma 3.2 of [5]. In Theorem 1 below we prove that 
the same result holds for every graph G, with a finite number of exceptions for 
every value of t. 
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REMARK 2. Vizing's Theorem (for proof see [4, pp. 107--108]) asserts that for 
every graph G, )ff(G)<=A(G)+I. This and Lemma 2 imply that if tie(G) and 
A(G)<e(G)/t, then tK2]G. 

The following lemma is proved in [4, p. 119]: 

LEMMA 3. If  G is a graph and z'(G) =A(G)+ 1 then 

e(G) >=@ (3(A(G))~+6.A(G)-I). [] 

Now we are ready to prove our main result: 

THEOREM 1. For every t >1 and for every graph G that satisfies 

(3) e(G)>(8/3)t2-2t, 

the following two conditions are equivalent: 

(4) tK2[G. 

(5) tle(G ) and A(G)<-_e(G)/t. 

PROOF. Clearly (4) implies (5) (even if G does not satisfy (3)). Conversely, 
assuming G satisfies (3) and (5) let us prove (4). Put A =A(G) and e=e(G). 
If A<e/t then Remark 2 implies (4), and if )((G)=A then Lemma 2 implies (4). 
Thus we are left with the case that x '(G)=A + 1 and A =e/t. We shall show that 
this Case contradicts (3). By Lemma 3 

(6) 8e _--> 3A~+6A-1 = 3(e/t)2+6(e/t)-l. 

Since the left side of (6) is divisible by e/t, and (3) implies that e/t > 1, (6) 
implies 

8e >= 3(e/t) 2 + 6(e/t). 

The last inequality implies e<=(8/3)t2-2t, which contradicts (3). Thus tK2IG 
and the theorem is established. [] 

REMARK 3. For t > l  let G t be the disjoint union of K~t_l ( =  the complete 
graph on 2t--1 vertices), and any graph H with t--1 edges. Clearly e(Gt)= 
=2t~--2t, A(Gt):2t-2 and z'(Gt)=x'(K2,_I)=2t-1. Thus Gt satisfies (5), 
and by Lemma 2, G~ does not satisfy (4). This shows that the lower bound for 
e(G) in condition (3) is not very far from being best possible. 
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